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Abstract
A Poisson superpair is a pair of Poisson superalgebra structures on a
supercommutative associative algebra, whose any linear combination is also a
Poisson superalgebra structure. In this paper, we first construct certain linear
and quadratic Poisson superpairs over a semi-finitely-filtered polarized Z2-
graded associative algebra. Then we give a construction of certain Hamiltonian
superpairs in the formal variational calculus over any finite-dimensional Z2-
graded associative algebra with a supersymmetric nondegenerate associative
bilinear form. Our constructions are based on the Adler mapping in a
general sense. Our results in this paper can be viewed as noncommutative
generalizations of the Adler–Gel’fand–Dikii Hamiltonian pair.

PACS numbers: 0210T, 0230T
AMS classification scheme numbers: 58F05, 35Q58, 53D17

1. Introduction

In the theory of completely integrable systems, one of the most beautiful structures is the
Adler–Gel’fand–Dikii Hamiltonian pair, which was constructed through the Adler mapping
[1, 13]. Such a Hamiltonian pair gives a pair of Poisson structures on the quotient space of
the differential polynomial algebra of scalar differential operators with fixed order modulo its
subspace of total differential polynomials (flux). They do not form Poisson algebra structures
because the quotient space does not form an associative algebra.

Gel’fand and Dorfman [15] generalized the Adler–Gel’fand–Dikii Hamiltonian pair to that
over differential operators with fixed order and the coefficients in a matrix algebra. The first
Hamiltonian structure for the Kadomtsev–Petviashvili hierarchy was suggested by Watanabe
[19]. Dickey [6] added the second Hamiltonian structure for the Kadomtsev–Petviashvili
hierarchy. These two structures form an analogue of the Adler–Gel’fand–Dikii Hamiltonian
pair over scalar pseudo-differential operators of positive order one and infinite negative order.
Radul [18] generalized it over scalar pseudo-differential operators of finite positive order and
infinite negative order.

Manin and Radul [17] gave a supersymmetric extension of the Kadomtsev–Petviashvili
hierarchy. Das and Huang [3] essentially partially generalized the Adler–Gel’fand–Dikii’s
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construction over scalar differential operators with fixed order to that over scalar pseudo-
differential operators with fixed positive and negative orders. Dofman and Fokas [9]
generalized the Adler–Gel’fand–Dikii Hamiltonian pair to that over differential operators with
fixed order and the coefficients in an algebra of pseudo-differential operators, in which the
algebra plays the same role as a number field. It seems that there is a problem of how to interpret
Dorfman and Fokas’ results in [9] in terms of the theory of Hamiltonian operators over a field.

In [20], we generalized the theory of Hamiltonian operators to that of Hamiltonian
superoperators over fermionic fields. Moreover, we established an analogous theory of
supervariables in [21]. In [22], we proved that conformal superalgebras are equivalent to
certain linear Hamiltonian superoperator of superfunctions in one real variable.

We observe that the Adler–Gel’fand–Dikii construction was essentially based on a
polarization of the algebra of pseudo-differential operators. Their construction could be
generalized and applied to more general polarized associative algebras. The first objective of
this paper is to construct linear and quadratic Poisson superpairs on supersymmetric polynomial
functions of a semi-finitely-filtered polarized Z2-graded associative algebra. The second
objective is to construct certain Hamiltonian superpairs in the formal variational calculus over
any finite-dimensional Z2-graded associative algebra with a supersymmetric nondegenerate
associative bilinear form. Our constructions are based on the Adler mapping in a general
sense. The results in this paper reveal that there is a deep algebraic essence behind the Adler–
Gel’fand–Dikii Hamiltonian pair. In fact, the linear structure in our general analogues of the
Adler–Gel’fand–Dikii Hamiltonian pair depends on a central element.

We shall give a more technical introduction in section 2. In section 3, we shall present
certain structural properties and constructions of Z2-graded polarized associative algebras.
The Poisson superpairs will be given in section 4. Section 5 is devoted to the Hamiltonian
superpairs in the formal variational calculus.

2. Technical background

This section serves as a technical introduction to the whole paper.
Throughout this paper, we let F be a field with characteristic not equal to two unless it is

specified. All the vector spaces (algebras) are assumed over F. Denote by Z the set of integers
and by N the set of nonnegative integers. For any two integers m1, m2, we shall often use the
following notation of index throughout this paper:

m1,m2 =
{{m1,m1 + 1,m1 + 2, ...,m2} if m1 � m2

∅ if m1 > m2.
(2.1)

First we introduce the definition of abstract Hamiltonian superoperators. Let (G, [·, ·]) be
a Lie superalgebra and let M be a G-module. For a positive integer q, a q-form of G with values
in M is a multi-linear map ω : Gq = G × · · · × G → M for which

ω(ξ1, ξ2, . . . , ξq ) = −(−1)ijω(ξ1, . . . , ξ−1, ξ+1, ξ, ξ+2, . . . , ξq ) (2.2)

for ξk ∈ G with k ∈ 1 · q \ {,  + 1}, ξ ∈ Gi and ξ+1 ∈ Gj . We denote by cq(G,M) the set
of q-forms. Moreover, we define a differential d: cq(G,M) → cq+1(G,M) by

dω(ξ1, ξ2, . . . , ξq+1) =
q+1∑
=1

(−1)+1+i(i1+···+i−1)ξω(ξ1, ..., ξ̌, ..., ξq+1)

+
∑
1<2

(−1)1+2+(i1 +i2 )(i1+···+i1−1)+i2 (i1+1+···+i2−1)

× ω([ξ1, ξ2 ], ξ1, ..., ξ̌1, . . . , ξ̌2 , . . . ., ξq+1) (2.3)
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for ω ∈ cq(G,M) and ξk ∈ Gik with k ∈ 1, q + 1, where the circumflex accent means deleting
the term under it. A q-form ω is called closed if dω = 0.

For any u ∈ M , we define a one-form du by

du(ξ) = ξ(u) for ξ ∈ G. (2.4)

Let � be a subspace of c1(G,M) such that dM ⊂ �. Suppose that H : � → G is a linear
map. We call H Z2-graded if

H(�) = H(�)0 ⊕ H(�)1 where H(�)i = H(�)
⋂

Gi . (2.5)

Moreover, H is called super-skew-symmetric if

φ1(Hφ2) = −(−1)i1i2φ2(Hφ1) where Hφj ∈ H(�)ij . (2.6)

For a Z2-graded super-skew-symmetric linear map H : � → G, we define a 2-form ωH on
H(�) by

ωH (Hφ1,Hφ2) = φ2(Hφ1) for φ1, φ2 ∈ �. (2.7)

We say that a super-skew-symmetric Z2-graded linear map H : � → G is a Hamiltonian
superoperator if

(a) the subspace H(�) of G forms a subalgebra;
(b) the left and right radicals of the form ωH are Z2-graded and dωH ≡ 0 on H(�).

Two Z2-graded linear maps H1,H2 : � → G are called a Hamiltonian pair if λ1H1 +
λ2 H2 is a Hamiltonian superoperator for any λ1, λ2 ∈ F.

Next we introduce the Adler–Gel’fand–Dikii Hamiltonian pair and the known
generalizations. We assume that F is a field of real numbers or a field of complex numbers.
Let k be a positive integer and let {u0, u1, . . . , uk−1} be k C∞-functions in the real variable x.
Set

u
(m)
j = dmuj

dxm
for m ∈ N, j ∈ 0, k − 1. (2.8)

Denote

P = F
[
u
(m)
j | m ∈ N, j ∈ 0, k − 1}] (2.9)

the differential polynomial algebras of {uj (x) | j ∈ 0, k − 1}. We view

d

dx
=

∑
j∈ 0,k−1, m∈N

u
(m+1)
j ∂

u
(m)
j

(2.10)

as a derivation of P . For convenience, we denote

∂ = d

dx
(2.11)

and define the algebra of pseudo-differential operators

D =
{

n∑
l=−∞

fl∂
l |n ∈ Z, fl ∈ P

}
(2.12)

with the multiplication determined by

(f ∂m)(g∂n) =
∞∑
p=0

(
m

p

)
fg(p)∂m+n−p for f, g ∈ P, m, n ∈ N (2.13)
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where

g(p) = ∂p(g). (2.14)

Set

G =
k−1∑
j=0

P∂j ⊂ D (2.15)

and

∂X =
∑

j∈0,k−1, m∈N

a
(m)
j ∂

u
(m)
j

for X =
k−1∑
j=0

aj ∂
j ∈ G. (2.16)

As derivations of P ,

[∂X, ∂] = 0 for X ∈ G. (2.17)

Define

∂X(Y ) =
k−1∑
j=0

∂X(bj )∂
j for X,Y =

k−1∑
j=0

bj ∂
j ∈ G. (2.18)

The Lie bracket on G is defined by

[X,Y ]0 = ∂X(Y )− ∂Y (X) for X,Y ∈ G. (2.19)

Set

P̃ = P/∂(P) (2.20)

and use the notation

f̃ = f + ∂(P) for f ∈ P. (2.21)

Moreover, by (2.17), we define an action of G on P̃:

X(f̃ ) = (∂X(f ))
∼ for X ∈ G, f ∈ A. (2.22)

Then P̃ forms a G-module.
Define

� =
k−1∑
j=0

∂−1−jP ⊂ D (2.23)

and identify it with a subspace of one-forms by

ξ(X) =
k−1∑
j=0

(aiαi)
∼ for ξ =

k−1∑
j=0

∂−1−jαj ∈ �, X =
k−1∑
j=0

aj ∂
j ∈ G. (2.24)

Moreover, we define the projection from D to G by(
n∑

l=−∞
fl∂

l

)
+

=
n∑
l=0

fl∂
l for

n∑
l=−∞

fl∂
l ∈ D with n ∈ N. (2.25)

Set

L = ∂k +
k−1∑
j=0

uj∂
j . (2.26)
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We define two linear maps H1,H2 : � → G by

H1(ξ) = ([L, ξ ])+ H2(ξ) = (Lξ)+L − L(ξL)+. (2.27)

Then H1 and H2 form a Hamiltonian pair, which is called the Adler–Gel’fand–Dikii
Hamiltonian pair (cf. [1, 7, 13]). The map H2 is called the Adler mapping (cf. [1]).

Gel’fand and Dorfman [15] generalized the Adler–Gel’fand–Dikii Hamiltonian pair over
the differential operator L with uj taking values in an m × m matrix algebra. Watanabe [19]
and Dickey [6] obtained Adler–Gel’fand–Dikii Hamiltonian pairs over the pseudo-differential
operator

L = ∂ +
0∑

j=−∞
uj∂

j . (2.28)

Radul [18] further generalized it over the pseudo-differential operator

L = ∂k +
k∑

j=−∞
uj∂

j (2.29)

for any positive integer k. Das and Huang [3] generalized the Gel’fand–Dikii construction of
Hamiltonian pairs essentially by extending P to the algebra of differential polynomials of 2k
C∞-functions {u−k, . . . , u−1, u0, . . . , uk−1}, taking

L = ∂k +
k−1∑
j=−k

uj ∂
j (2.30)

and keeping G and � the same as in (2.15) and (2.23) with the new P . Dorfman and Fokas
obtained the Adler–Gel’fand–Dikii Hamiltonian pair over the differential operator L with uj

taking values in an algebra of pseudo-differential operators, in which the algebra plays the
same role as a number field. It seems that there is a problem of how to interpret Dorfman and
Fokas’ results in [9] in terms of the theory of Hamiltonian operators over a field.

Let F be a general field. A Z2-graded associative algebra

A = A0 ⊕ A1 (2.31)

is called a polarized Z2-graded associative algebra if A has a nondegenerate Z2-graded
supersymmetric associative bilinear form 〈·, ·〉 : A × A → F, that is,

〈A0,A1〉 = {0} 〈u, v〉 = (−1)i1i2〈v, u〉 〈uv,w〉 = 〈u, vw〉 (2.32)

for u ∈ Ai1, v ∈ Ai2 , w ∈ A, and contains two Z2-graded isotropic subalgebras A+ and A−,
namely,

〈A+,A+〉 = {0} 〈A−,A−〉 = {0} (2.33)

such that

A = A+ ⊕ A−. (2.34)

Expressions (2.33) and (2.34) are called a polarization of A.
An associative algebra B is called supercommutative if B = B0 ⊕ B1 is a Z2-graded

algebra such that

uv = (−1)i1i2vu for u ∈ Bi1 , v ∈ Bi2 . (2.35)

A Poisson superalgebra is a supercommutative associative B with another algebraic operation
{·, ·}, called a Poisson superbracket, such that (B, {·, ·}) forms a Lie superalgebra and the
following compatibility condition holds

{u, vw} = {u, v}w + (−1)i2i2v{u,w} for u ∈ Bi1 , v ∈ Bi2 , w ∈ B. (2.36)



4246 Xiaoping Xu

The main purpose of this paper is to give a more systematic study in generalizations
of the Adler–Gel’fand–Dikii construction of Hamiltonian pairs over a polarized Z2-graded
associative algebra. In particular, we obtain pairs of a linear and a quadratic Poisson
superalgebra structures on supersymmetric polynomial functions of a semi-finitely-filtered
polarized Z2-graded associative algebras.

3. Polarized associative algebras

In this section, we shall present certain structural properties and constructions of Z2-graded
polarized associative algebras.

As we shall show below, the structure of a Z2-graded polarized associative algebra is
determined by a certain compatible pair of Z2-graded associative algebra structures on a
vector space.

Let

A = A+ ⊕ A− (3.1)

be a polarized Z2-graded associative algebra with the nondegenerate Z2-graded
supersymmetric associative bilinear form 〈·, ·〉. Set

A±
i = Ai

⋂
A± for i ∈ Z2. (3.2)

Take a basis {ς+
i,j |j ∈ Ii} of A+

i for i ∈ Z2, where Ii are index sets. Suppose that A−
i has a

dual basis {ς−
i,j | j ∈ Ii} with respect to the basis {ς+

i,j | j ∈ Ii} of A+
i for i ∈ Z2, that is,

〈ς−
i1,j1

, ς+
i2,j2

〉 = δi1,i2δj1,j2 for i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 . (3.3)

This assumption trivially holds when A is finite-dimensional.
Write

ς±
i1,j1

ς±
i2,j2

=
∑

j3∈Ii1+i2

a
±,j3
i1,j1;i2,j2

ς±
i1+i2,j3

for i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 . (3.4)

Then

〈ς+
i1,j1

ς−
i2,j2

, ς−
i1+i2,j3

〉 = 〈ς+
i1,j1

, ς−
i2,j2

ς−
i1+i2,j3

〉 = (−1)i1a−,j1
i2,j2;i1+i2,j3

(3.5)

〈ς+
i1+i2,j3

, ς+
i1,j1

ς−
i2,j2

〉 = 〈ς+
i1+i2,j3

ς+
i1,j1

, ς−
i2,j2

〉 = (−1)i2a+,j2
i1+i2,j3;i1,j1

(3.6)

〈ς−
i1,j1

ς+
i2,j2

, ς+
i1+i2,j3

〉 = 〈ς−
i1,j1

, ς+
i2,j2

ς+
i1+i2,j3

〉 = a
+,j1
i2,j2;i1+i2,j3

(3.7)

〈ς−
i1+i2,j3

, ς−
i1,j1

ς+
i2,j2

〉 = 〈ς−
i1+i2,j3

ς−
i1,j1

, ς+
i2,j2

〉 = a
−,j2
i1+i2,j3;i1,j1

(3.8)

for i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 and j3 ∈ Ii1+i2 by (2.32) and (3.3). Thus we have

ς+
i1,j1

ς−
i2,j2

=
∑

j3∈Ii1+i2

(
(−1)i2a−,j1

i2,j2;i1+i2,j3
ς+
i1+i2,j3

+ (−1)i1a+,j2
i1+i2,j3;i1,j1

ς−
i1+i2,j3

)
(3.9)

ς−
i1,j1

ς+
i2,j2

=
∑

j3∈Ii1+i2

(
a

+,j1
i2,j2;i1+i2,j3

ς−
i1+i2,j3

+ a
−,j2
i1+i2,j3;i1,j1

ς+
i1+i2,j3

)
(3.10)

for i1, i2 ∈ Z2, j1 ∈ Ii1 and j2 ∈ Ii2 .
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Let ip ∈ Z2, jp ∈ Iip with p = 1, 2, 3. We have:

(ς+
i1,j1

ς+
i2,j2

)ς−
i3,j3

=
∑

j4∈Ii1+i2

a
+,j4
i1,j1;i2,j2

ς+
i1+i2,j4

ς−
i3,j3

=
∑

j4∈Ii1+i2 , j5∈Ii1+i2+i3

a
+,j4
i1,j1;i2,j2

(
(−1)i3a−,j4

i3,j3;i1+i2+i3,j5
ς+
i1+i2+i3,j5

+ (−1)i1+i2a
+,j3
i1+i2+i3,j5;i1+i2,j4

ς−
i1+i2+i3,j5

)
(3.11)

ς+
i1,j1

(ς+
i2,j2

ς−
i3,j3

)

=
∑

j4∈Ii2+i3

(
(−1)i3a−,j2

i3,j3;i2+i3,j4
ς+
i1,j1

ς+
i2+i3,j4

+ (−1)i2a+,j3
i2+i3,j4;i2,j2

ς+
i1,j1

ς−
i2+i3,j4

)

=
∑

j4∈Ii2+i3 , j5∈Ii1+i2+i3

[
(−1)i3

(
a

−,j2
i3,j3;i2+i3,j4

a
+,j5
i1,j1;i2+i3,j4

+ a
+,j3
i2+i3,j4;i2,j2

a
−,j1
i2+i3,j4;i1+i2+i3,j5

)
ς+
i1+i2+i3,j5

+ (−1)i1+i2a
+,j3
i2+i3,j4;i2,j2

a
+,j4
i1+i2+i3,j5;i1,j1

ς−
i1+i2+i3,j5

]
(3.12)

(ς+
i1,j1

ς−
i2,j2

)ς+
i3,j3

=
∑

j4∈Ii1+i2

(
(−1)i2a−,j1

i2,j2;i1+i2,j4
ς+
i1+i2,j4

+ (−1)i1a+,j2
i1+i2,j4;i1,j1

ς−
i1+i2,j4

)
ς+
i3,j3

=
∑

j4∈Ii1+i2 , j5∈Ii1+i2+i3

[(
(−1)i2a+,j5

i1+i2,j4;i3,j3
a

−,j1
i2,j2;i1+i2,j4

+ (−1)i1a−,j3
i1+i2+i3,j5;i1+i2,j4

a
+,j2
i1+i2,j4;i1,j1

)
ς+
i1+i2+i3,j5

+ (−1)i1a+,j4
i3,j3;i1+i2+i3,j5

a
+,j2
i1+i2,j4;i1,j1

ς−
i1+i2+i3,j5

]
(3.13)

ς+
i1,j1

(
ς−
i2,j2

ς+
i3,j3

)
=

∑
j4∈Ii2+i3

ς+
i1,j1

(
a

+,j2
i3,j3;i2+i3,j4

ς−
i2+i3,j4

+ a
−,j3
i2+i3,j4;i2,j2

ς+
i2+i3,j4

)

=
∑

j4∈Ii1+i2 , j5∈Ii1+i2+i3

[(
(−1)i2+i3a

−,j1
i2+i3,j4;i1+i2+i3,j5

a
+,j2
i3,j3;i2+i3,j4

+ a
+,j5
i1,j1;i2+i3,j4

a
−,j3
i2+i3,j4;i2,j2

)
ς+
i1+i2+i3,j5

+ (−1)i1a+,j4
i1+i2+i3,j5;i1,j1

a
+,j2
i3,j3;i2+i3,j4

ς−
i1+i2+i3,j5

]
. (3.14)

Thus we obtain

∑
j4∈Ii1+i2

a
+,j4
i1,j1;i2,j2

a
−,j4
i3,j3;i1+i2+i3,j5

=
∑

j4∈Ii2+i3

(
a

−,j2
i3,j3;i2+i3,j4

a
+,j5
i1,j1;i2+i3,j4

+ a
+,j3
i2+i3,j4;i2,j2

a
−,j1
i2+i3,j4;i1+i2+i3,j5

)
(3.15)
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by (3.11) and (3.12), and∑
j4∈Ii1+i2

(
(−1)i2a+,j5

i1+i2,j4;i3,j3
a

−,j1
i2,j2;i1+i2,j4

+ (−1)i1a−,j3
i1+i2+i3,j5;i1+i2,j4

a
+,j2
i1+i2,j4;i1,j1

)

=
∑

j4∈Ii1+i2

(
(−1)i2+i3a

−,j1
i2+i3,j4;i1+i2+i3,j5

a
+,j2
i3,j3;i2+i3,j4

+ a
+,j5
i1,j1;i2+i3,j4

a
−,j3
i2+i3,j4;i2,j2

)

(3.16)

by (3.13) and (3.14), for ip ∈ Z2, jp ∈ Iip with p = 1, 2, 3 and j5 ∈ Ii1+i2+i3 . Conversely, we
have the following conclusion.

Proposition 3.1. Suppose that we have two Z2-graded associative algebra operations ◦+ and
◦− on a Z2-graded vector space B = B0 ⊕ B1 such that under a basis {ϑi,j | i ∈ Z2, j ∈ Ii}
of B, the structure constants{

a
±,j3
i1,j1;i2,j2

∣∣∣i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 , j3 ∈ Ii1+i2

}
. (3.17)

satisfy (3.15) and (3.16), where

ϑi1,j1 ◦± ϑi2,j2 =
∑

j3∈Ii1 +i2

a
±,j3
i1,j1;i2,j2

ϑi1,i2,j3 for i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 . (3.18)

Let A±
i be the vector spaces with a basis {ς±

i,j | j ∈ Ii} for i ∈ Z2. Set

A = A0 ⊕ A1 = A+ ⊕ A− (3.19)

with

Ai = A+
i + A−

i A± = A±
0 ⊕ A±

1 . (3.20)

We define the multiplication operation on A by (3.4), (3.9) and (3.10), and the bilinear form
〈·, ·〉 by

〈A±,A±〉 = {0} (3.21)

and

〈ς−
i1,j1

, ς+
i2,j2

〉 = (−1)i1〈ς+
i2,j2

, ς−
i1,j1

〉 = δi1,i2δj1,j2 (3.22)

for i1, i2 ∈ Z2, j1 ∈ Ii1 , j2 ∈ Ii2 . Then A forms a Z2-graded polarized associative algebra.

Proof. By (3.5)–(3.8), (3.11)–(3.14) and the symmetry of (3.15) and (3.16) with respect to
the signs ‘+’ and ‘–’, we only need to verify

(ς+
i1,j1

ς−
i2,j2

)ς−
i3,j3

= ς+
i1,j1

(ς−
i2,j2

ς−
i3,j3

) (3.23)

〈ς+
i1,j1

ς−
i2,j2

, ς+
i1+i2,j3

〉 = 〈ς+
i1,j1

, ς−
i2,j2

ς+
i1+i2,j3

〉 (3.24)

for ip ∈ Z2 and jp ∈ Ip . Note

(ς+
i1,j1

ς−
i2,j2

)ς−
i3,j3

=
∑

j4∈Ii1+i2

(
(−1)i2a−,j1

i2,j2;i1+i2,j4
ς+
i1+i2,j4

+ (−1)i1a+,j2
i1+i2,j4;i1,j1

ς−
i1+i2,j4

)
ς−
i3,j3

=
∑

j4∈Ii1+i2 , j5∈Ii1+i2+i3

(
(−1)i2+i3a

−,j1
i2,j2;i1+i2,j4

a
−,j4
i3,j3;i1+i2+i3,j5

ς+
i1+i2+i3,j5

+ (−1)i1
(
a

−,j1
i2,j2;i1+i2,j4

a
+,j3
i1+i2+i3,j5;i1+i2,j4

+ a
−,j5
i1+i2,j4;i3,j3

a
+,j2
i1+i2,j4;i1,j1

))
ς−
i1+i2+i3,j5

(3.25)
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ς+
i1,j1

(ς−
i2,j2

ς−
i3,j3

) =
∑

j4∈Ii2+i3

a
−,j4
i2,j2;i3,j3

ς+
i1,j1

ς−
i2+i3,j4

=
∑

j4∈Ii2+i3 , j5∈Ii1+i2+i3

a
−,j4
i2,j2;i3,j3

(
(−1)i2+i3a

−,j1
i2+i3,j4;i1+i2+i3,j5

ς+
i1+i2+i3,j5

+ (−1)i1a+,j4
i1+i2+i3,j5;i1,j1

ς−
i1+i2+i3,j5

)
. (3.26)

So (3.23) follows from (3.25), (3.26) and (3.15) with the change of indices:

i1 → i1 + i2 + i3 → i3 → i2 → i1 j1 → j5 → j3 → j2 → j1. (3.27)

Moreover,

〈ς+
i1,j1

ς−
i2,j2

, ς+
i1+i2,j3

〉 = (−1)i1a+,j2
i1+i2,j3;i1,j1

(3.28)

by (3.9) and (3.22), and

〈ς+
i1,j1

, ς−
i2,j2

ς+
i1+i2,j3

〉 = (−1)i1a+,j2
i1+i2,j3;i1,j1

(3.29)

by (3.10) and (3.22). Therefore, (3.24) holds. �
Let A be a polarized Z2-graded associative algebra with the bilinear form 〈·, ·〉1 and let B

be a Z2-graded associative algebra with a nondegenerate supersymmetric associative bilinear
form 〈·, ·〉2 (cf. (2.32)). Here B may not be polarized. Set

Ã0 = A0 ⊗F B0 + A1 ⊗F B1 Ã1 = A0 ⊗F B1 + A1 ⊗F B0 (3.30)

Ã+ = A+ ⊗F B Ã− = A− ⊗F B (3.31)

and

Ã = Ã0 ⊕ Ã1 = Ã+ ⊕ Ã−. (3.32)

Define the multiplication and bilinear form on Ã by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)i1,i2a1a2 ⊗ b1b2

〈a1 ⊗ b1, a2 ⊗ b2〉 = (−1)i1i2〈a1, a2〉1〈b1, b2〉2
(3.33)

for a1 ∈ A, a2 ∈ Ai1 and b1 ∈ Bi2 , b2 ∈ B. It is straightforward to verify the following
proposition.

Proposition 3.2. The space Ã forms a polarized Z2-graded associative algebra.

Example 3.1. In the algebra F[t, t−1] of Laurent polynomials, we define the bilinear form

〈tm, tn〉 = δm+n,−1 for m,n ∈ Z. (3.34)

Set

(F[t, t−1])+ = F[t] (F[t, t−1])− = F[t−1]t−1. (3.35)

Then F[t, t−1] = (F[t, t−1])+ ⊕ (F[t, t−1])− forms a polarized associative algebra (with
(F[t, t−1])0 = F[t, t−1] and (F[t, t−1])1 = {0}).
Example 3.2. Let k be a positive integer and let k1 ∈ 0, k − 1. Denote by Mk×k(F) the
algebra of k × k matrices with entries in F, and by Ej,l the matrix with 1 as its (j, l)-entry
and 0 as the others. Define

Mk×k(F)0 =
∑

j,l∈1,k1

FEj,l +
∑

p,q∈k1+1,k

FEp,q (3.36)

Mk×k(F)1 =
∑

j∈1,k1, p∈k1+1,k

(FEj,p + FEp,j ) (3.37)
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and

Tr A =
∑
j∈1,k1

aj,j −
∑

p∈k1+1,k

ap,p for A =
k∑

j,l=1

aj,lEj,l ∈ Mk×k(F). (3.38)

Moreover, we define

〈A,B〉 = Tr AB for A,B ∈ Mk×k(F). (3.39)

ThenMk×k(F) forms a Z2-graded associative algebra with the supersymmetric nondegenerate
associative bilinear form 〈·, ·〉.

According to proposition 3.2,

Mk×k(F)⊗F F[t, t−1] ∼= Mk×k(F[t, t−1]) (3.40)

forms a polarized Z2-graded associative algebra, where Mk×k(F[t, t−1]) denote the algebra
of k × k matrices with entries in F[t, t−1].

Example 3.3. Let k > 1 be integer and F = C the field of complex numbers. The Hecke
algebra Hk is an associative algebra generated by {T1, . . . , Tk−1} with the following defining
relations

TiTj = TjTi whenever |i − j | � 2 (3.41)

TiTi+1Ti = Ti+1TiTi+1 T 2
i = (q − 1)Ti + q (3.42)

for i, j ∈ 1, k − 1, where 0 �= q ∈ C. Let ζ ∈ C be a fixed constant. According to section 5
of [16], there exists a unique trace map ‘Tr’ of Hk such that

Tr (1Hk ) = 1 Tr (aTnb) = ζTr (ab) for a, b ∈ Hn (3.43)

with n ∈ 1, k − 2. This trace map is the key to define the well-known ‘Jones polynomials’ of
knots (e.g., cf. [16]). Furthermore, we define the bilinear form

〈u, v〉 = Tr uv for u, v ∈ Hk. (3.44)

Then 〈·, ·〉 is a nondegenerate associative symmetric bilinear form of Hk under a certain
condition on ζ .

According to proposition 3.2 and (3.40),

Hk ⊗F Mk×k(F[t, t−1]) (3.45)

forms a Z2-graded polarized associative algebras under a certain condition of ζ . Here we treat
the odd part of Hk as zero.

Example 3.4. Let G be a group. Take a map ε : G× G → F
× = F \ {0} such that

ε(g1, g2)ε(g1g2, g3) = ε(g1, g2g3)ε(g2, g3) for g1, g2, g3 ∈ G. (3.46)

Let F[G]ε be a vector space with a basis {ug|g ∈ G}. Define the multiplication on F[G]ε by

ug1ug2 = ε(g1, g2)ug1g2 for g1, g2 ∈ G. (3.47)

Then F[G]ε forms an associative algebra, which is called a twisted group algebra of G.
Moreover, we define Tr : F[G]ε → F by

Tr (ug) = δg,0 for g ∈ G (3.48)

and

〈u, v〉 = Tr (uv) for u, v ∈ F[G]ε. (3.49)

It is straightforward to verify that 〈·, ·〉 is a nondegenerate symmetric associative bilinear form
of F[G]ε.
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According to proposition 3.2 and (3.45),

F[G]ε ⊗F Hk ⊗F Mk×k(F[t, t−1]) (3.50)

forms a Z2-graded polarized associative algebra. Here we treat the odd part of F[G]ε as zero.

The following work is necessary for defining Poisson superpairs over an infinite-
dimensional Z2-graded polarized associative algebra.

Let A be a Z2-graded polarized associative algebra with the bilinear form 〈·, ·〉. Define

A(0) = {u ∈ A+ | A−u ⊂ A−} (3.51)

and

A(m+1) = {u ∈ A+ | A−u ⊂ A(m) + A−} (3.52)

for m ∈ N by induction. Then we have

A(n) ⊂ A(n+1) for n ∈ N. (3.53)

Set

A(−1) = A− A(−2−m) = {u ∈ A− | 〈u,A(m)〉 = {0}} for m ∈ N. (3.54)

Then (3.53) also holds for a negative intger n < −1. Since A+ and A− are Z2-graded
subalgebras of A, all A(n) with n ∈ Z are Z2-graded subspaces of A by (2.32).

Proposition 3.3. For m,n ∈ N,

A(m)A(n) ⊂ A(m+n) (3.55)

A(m+n)A(−n−1) A(−n−1)A(m+n) ⊂ A(m−1) + A− (3.56)

A(m)A(−m−n−2) A(−m−n−2)A(m) ⊂ A(−n−2) (3.57)

A(−m−1)A(−n−1) ⊂ A(−m−n−2) (3.58)

Proof. We prove (3.55) by induction on m. Note

A−(A(0)A(n)) = (A−A(0))A(n) ⊂ A−A(n) ⊂ A(n−1) + A− (3.59)

by (3.51) and (3.52). Moreover, (3.52) and (3.59) imply (3.55) with m = 0. Suppose that
(3.55) holds for m = k with k ∈ N. We have

A−(A(k+1)A(n)) = (A−A(k+1))A(n) ⊂ (A(k) + A−)A(n) ⊂ A(k+n) + A− (3.60)

by (3.52). Again (3.52) and (3.60) imply (3.55) with m = k +1. So (3.55) holds.
We define

A[0] = {u ∈ A+ | uA− ⊂ A−} (3.61)

and

A[m+1] = {u ∈ A+ | uA− ⊂ A[m] + A−} (3.62)

for m ∈ N by induction. Note

〈A−,A(0)A−〉 = 〈A−A(0),A−〉 ⊂ 〈A−,A−〉 = {0} (3.63)

by (2.32) and (2.33). By the nondegeneracy of 〈·, ·〉 and (2.34), we have

A(0)A− ⊂ A−. (3.64)

Thus

A(0) ⊂ A[0]. (3.65)
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By the symmetric proof as that in the above, we also have A[0] ⊂ A(0). Hence

A(0) = A[0]. (3.66)

Suppose that

A(m) = A[m] (3.67)

for m � k with k ∈ N. We have

A−(A(k+1)A−) = (A−A(k+1))A− ⊂ (A(k) + A−)A− ⊂ A[k]A− + A− ⊂ A[k−1] + A−

= A(k−1) + A− (3.68)

by (3.52), (3.62) and (3.67). Definition (3.52) implies

A(k+1)A− ⊂ A(k) = A[k]. (3.69)

By (3.62), we have

A(k+1) ⊂ A[k+1]. (3.70)

A symmetric argument shows A[k+1] ⊂ A(k+1). Hence

A(k+1) = A[k+1]. (3.71)

Therefore, (3.67) holds for any m ∈ N by induction.
Expressions (3.52), (3.62) and (3.67) imply that (3.56) holds for n = 0. Assume n > 0.

Then we have

〈A−,A(n)A(−n−1)〉 ⊂ 〈A−A(n),A(−n−1)〉 ⊂ 〈A(n−1) + A−,A(−n−1)〉 = {0} (3.72)

by (2.32), (2.33) and (3.54). The nondegeneracy of 〈·, ·〉 and (2.34) imply

A(n)A(−n−1) ⊂ A− = A(−1). (3.73)

Suppose that

A(m+n)A(−n−1) ⊂ A(m−1) + A− (3.74)

holds for some m ∈ N. We have

A−(A(m+1+n)(A(−n−1)) = (A−A(m+1+n))A(−n−1) ⊂ (A(m+n) + A−)A(−n−1)

⊂ A(m+n)A(−n−1) + A− ⊂ A(m−1) + A− (3.75)

by (3.52), (3.74) and the fact A− is a subalgebra of A (note A(−n−1) ⊂ A− by (3.54)). Again
the definition (3.52) imply

A(m+1+n)A(−n−1) ⊂ A(m) + A−. (3.76)

By induction, (3.74) holds for any m ∈ N. By means of (3.67), we can symmetrically prove

A(−n−1)A(m+n) ⊂ A(m−1) + A−. (3.77)

This proves (3.56).
For m,n ∈ N, we have

〈A(n),A(m)A(−m−n−2)〉 = 〈A(n)A(m),A(−m−n−2)〉 ⊂ (A(m+n),A(−m−n−2)〉 = {0} (3.78)

by (2.32), (3.54) and (3.55). Moreover, (3.54) and (3.78) imply

A(m)A(−m−n−2) ⊂ A(−n−2). (3.79)

Symmetrically, we can prove

A(−m−n−2)A(m) ⊂ A(−n−2) (3.80)

by (3.67). So (3.57) holds.
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Observe that

〈A(m+n),A(−m−1)A(−n−1)〉 = 〈A(m+n)A(−m−1),A(−n−1) ⊂ 〈A(n−1) + A−,A(−n−1)〉 = {0}
(3.81)

by (2.32), (2.33), (3.54) and (3.56). Moreover, (3.54) and (3.81) imply

A(−m−1)A(−n−1) ⊂ A(−m−n−2) (3.82)

that is, (3.58) holds. �

4. Poisson superpairs

In this section, we shall construct Poisson superpairs over a Z2-graded polarized associative
algebra.

Let 4 be a vector space, not necessarily finite-dimensional. Let F(4) be the free
associative algebra generated by 4. Then the exterior algebra E generated by 4 is isomorphic
to

E = F(4)/({uv + vu | u, v ∈ 4}). (4.1)

We can identify 4 with its image in E . Note that

E = E0 ⊕ E1 where E0 =
∞∑
n=0

42n, E1 =
∞∑
n=0

42n+1. (4.2)

With respect to the above grading, E becomes a super commutative associative algebra, that
is,

uv = (−1)ij vu for u ∈ Ei , v ∈ Ej . (4.3)

Let

A = A+ ⊕ A− = A0 ⊕ A1 (4.4)

be infinite-dimensional Z2-graded polarized associative algebra with the bilinear form 〈·, ·〉.
Recall the notations of A(n) with n ∈ Z defined in (3.51), (3.52) and (3.54). Their properties,
which are important to the following construction, have been presented in proposition 3.3 (cf.
(3.55)–(3.58)). Assume that the algebra A satisfies the following condition:

A+ =
∞⋃
m=0

A(m) dimA(m) < ∞. (4.5)

We call such an algebra A a semi-finitely-filtered polarized Z2-graded associative algebra.
Examples of this type of algebras have been given in examples 3.1–3.4.

Set

A(m)
i = A(m)

⋂
Ai ki,m = dimA(m)

i (4.6)

for i ∈ Z2 and m ∈ N. Take a basis {ςi,j | j ∈ Ji} of A+
i for i ∈ Z2 with

Ji = N + 1 or 1, n for some n ∈ N + 1 (4.7)

(which is guaranteed by (4.5)) such that

{ςi,j | j ∈ 1, ki,m} is a basis of A(m)
i (4.8)

for i ∈ Z2 and m ∈ N.
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Take a subset {ςi,−j | j ∈ Ji} of A−
i for i ∈ Z2 such that

〈ςi1,−j1 , ςi2,j2〉 = δi1,i2δj1,j2 for i1, i2 ∈ Z2, j1 ∈ Ji1 , j2 ∈ Ji2 (4.9)

and for any u ∈ A−
i ,

u =
∑

i∈Z2, j∈Ji
λi,j ςi,−j with λi,j ∈ F. (4.10)

So {ςi,−j | j ∈ Ji} is a dual basis in A−
i of {ςi,j | j ∈ Ji}, in the possible sense of toplogical

completion. By (3.54)

ςi,−j ∈ A(−m−2) for i ∈ Z2, ki,m < j ∈ Ji . (4.11)

Pick a positive integer ι. Set

Ii = (−Ji)
⋂

1, ki,ι for i ∈ Z2. (4.12)

For i ∈ Z2, let {xi,j | j ∈ Ii} be the variables taking values in Ei (cf. (4.2)). Denote by P the
algebra of supersymmetric polynomials in {xi,j | i ∈ Z2, j ∈ Ii}. Then P has the Z2-grading

Pi = Span

{
xi1,j1 · · · xi,j |  ∈ N, ip ∈ Z2, jp ∈ Iip ,

∑
r=1

ir ≡ i

}
(4.13)

for i ∈ Z2, and

fg = (−1)i1i2fg for f ∈ Pi1 , g ∈ Pi2 . (4.14)

For i1 ∈ Z2 and j1 ∈ Ii1 , we define a linear transformation ∂i1,j1 on P by

∂i1,j1(fg) = ∂i1,j1(f )g + (−1)i1i2f ∂i1,j1(g) for i2 ∈ Z2, f ∈ Pi2 , g ∈ P (4.15)

and

∂i1,j1(xi2,j2) = δi1,i2δj1,j2 for i2 ∈ Z2, ji2 ∈ Ii2 . (4.16)

Then ∂i1,j1 is a supersymmetric derivation of P with parity ι1. Set

W0 =
{ ∑

i∈Z2, j∈Ii
fi,j ∂i,j | fi,j ∈ Pi

}
(4.17)

W1 =
{ ∑

i∈Z2, j∈Ii
fi,j ∂i,j | fi,j ∈ Pi+1

}

and

W = W0 + W1 (4.18)

as a subspace of supersymmetric derivations of P . The Lie superbracket on W is defined by

[d1, d2] = d1d2 − (−1)i1i2d2d1 for d1 ∈ Wi1, d2 ∈ Wi2 . (4.19)

In fact, if d1 = ∑
i∈Z2, j∈Ii fi,j ∂i,j ∈ Wi1 and d2 = ∑

i∈Z2, j∈Ii gi,j ∂i,j ∈ Wi2 , then we have

[d1, d2] =
∑

i∈Z2, j∈Ii

∑
i1∈Z2, j1∈Ii1

[fi1,j1∂i1,j1(gi,j )− (−1)i1i2gi1,j1∂i1,j1(fi,j )]∂i,j . (4.20)

Define the vector space

G =



∑
i∈Z2, j∈Ji

ξi,−j ςi,−j | ξi,−j ∈ P

 +

∑
i∈Z2, j∈Ji

Pςi,j . (4.21)
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Equip G with the Z2-grading:

G0 =



∑
i∈Z2, j∈Ji

ξi,−j ςi,−j | ξi,−j ∈ Pi


 +

∑
i∈Z2, j∈Ji

Piςi,j , (4.22)

G1 =



∑
i∈Z2, j∈Ji

ξi,−j ςi,−j | ξi,−j ∈ Pi+1


 +

∑
i∈Z2, j∈Ji

Pi+1ςi,j . (4.23)

Set

J i = Ji
⋃

(−Ji) for i ∈ Z2. (4.24)

For covenience, we use the notation

ςξ =
∑

i∈Z2, j∈J i
ξi,j ςi,j ∈ G. (4.25)

Moreover, we define the multiplication on G by

ςξ ςη =
∑

i1,i2∈Z2, j1∈J i1 , j2∈J i2

(−1)i1(i2+p)ξi1,j1ηi2,j2ςi1,j1ςi2,j2 (4.26)

for ςξ ∈ G and ςη ∈ Gp. The above expression is well defined because of proposition 3.3.
It can be verified that the space G forms a Z2-graded associative algebra with respect to the
multiplication in (4.26). Furthermore, we define a bilinear form G by

〈ςξ , ςη〉 =
∑

i∈Z2, j∈Ji
(−1)i(i+p)(ξi,−j ηi,j + (−1)iξi,j ηi,−j ) (4.27)

for ςξ ∈ G and ςη ∈ Gp, where the sum is finite by (4.21). It is straightforward to verify
that the above bilinear form is a Z2-graded supersymmetric associative bilinear form of G. In
fact, one can view G as an extension algebra of A with extended Z2-graded supersymmetric
associative bilinear form 〈·, ·〉.

Define

G =



∑
i∈Z2, j∈Ii

ξi,j ςi,j | ξi,j ∈ P

 (4.28)

(cf. (4.12)). Then G forms a Z2-graded subspace of G, that is,

G = G0 ⊕ G1 Gi = G
⋂

Gi . (4.29)

In general, G does not form a subalgebra of G. We shall use the convention that

ςξ ∈ G implies ξi,j = 0 for j > ki,ι. (4.30)

Thus

ςξ =
∑

i∈Z2, j∈Ii
ξi,j ςi,j if ςξ ∈ G (4.31)

(cf. (4.12)).
We define

∂ς
ξ

=
∑

i∈Z2, j∈Ii
ξi,j ∂i,j for ςξ ∈ G. (4.32)
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The map

u → ∂u (4.33)

gives a Z2-graded linear isomorphism between G and W . Moreover, we define the action of
W on G by

d(ςξ ) =
∑

i∈Z2, j∈Ii
d(ξi,j )ςi,j for d ∈ W, ςξ ∈ G. (4.34)

We can use (4.33) as an identification of G with W (cf. (4.18) and (4.20)). We denote by
[·,·]0 the corresponding Lie superbracket of G. By (4.19), (4.20) and (4.33), we have

[u, v]0 = ∂u(v) − (−1)i1i2∂v(u) for u ∈ Gi1 , v ∈ Gi2 . (4.35)

The algebra P becomes a G-module with the action

u(f ) = ∂u(f ) for u ∈ G, f ∈ P. (4.36)

Set

� =
∑

i∈Z2, j∈Ii
Pςi,−j . (4.37)

Then � forms a Z2-graded subspace of G, that is,

� = �0 ⊕ �1 �i = G
⋂

Gi . (4.38)

We shall also use the convention that

ςξ ∈ � implies ξi,j = 0 for j < −ki,ι. (4.39)

Thus

ςξ =
∑

i∈Z2, j∈Ii
ξi,−j ςi,−j if ςξ ∈ �, (4.40)

where the sum is finite by (4.37). We identify � with a subspace of one-forms by

w(u) = 〈u,w〉 for w ∈ �, u ∈ G (4.41)

(cf. (4.27)). For f = f0 + f1 with f0 ∈ P0 and f1 ∈ P1, we define

ς
(f )

=
∑

i∈Z2, j∈Ji
((−1)i∂i,−j (f0) + ∂i,−j (f1))ςi,j

+
∑

i∈Z2, j∈1,ki,ι

(∂i,j (f0) + (−1)i∂i,j (f1))ςi,−j ∈ �. (4.42)

Then

df (u) = ∂u(f ) = 〈u, ς
(f )

〉 for u ∈ G, f ∈ P. (4.43)

Hence

df = ς
(f )

for f ∈ P. (4.44)

Let H : � → G be a map of the form

H(ςη) =
∑

i∈Z2, j∈Ii
ηi,j ai,j (4.45)

with

ai,j ∈ Gi (4.46)
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for ςη ∈ �. Given u ∈ Gq , we define the map ∂u(H) : � → G by

∂u(H)(ςη) =
∑

i1,i2∈Z2, j1∈Ii1 , j2∈Ii2

(−1)(i2+p)qηi2,j2∂u(ai2,j2) (4.47)

for ςη ∈ �p. Note that for ςη ∈ �p and u ∈ Gq , we have

∂u(H(ςη)) = ∂u(H)(ςη) + H(∂u(ςη)) (4.48)

by (4.32), (4.34) and (4.47). Define

{f, g}H = 〈H(ς
(f )
), ς

(g)
〉 for f, g ∈ P. (4.49)

By (3.59)–(3.71) in [22] (also see section 4 in [20]) and (4.48), we have the following lemma.

Lemma 4.1. The map {·, ·}H forms a Poisson superbracket if H satisfies

〈H(v), u〉 = −(−1)i1i2〈H(u), v〉 (4.50)

and

〈∂H(u)(H)(v),w〉 + (−1)i1(i2+i3)〈∂H(v)(H)(w), u〉 + (−1)(i1+i2)i3〈∂H(w)(H)(u), v〉 = 0

(4.51)

for u ∈ �i1, v ∈ �i2 and w ∈ �i3 .

Denote

(ςξ )± =
∑

i∈Z2, j∈Ji
ξi,±j ςi,±j for ςξ ∈ G. (4.52)

Set

G± = {u± | u ∈ G}. (4.53)

Then G+
and G−

form Z2-graded associative subalgebras of G. In fact,

G = G+ ⊕ G−
is a polarization of G (4.54)

with respect to the multiplication in (4.26) and the bilinear form in (4.27). For any v ∈ G, we
write

v = v+ + v− with v± ∈ G±
. (4.55)

In order to prove our main theorem in this section, we need the following lemma.

Lemma 4.2. For u ∈ Gi1 , v ∈ Gi2 and w ∈ Gi3 , we have:

〈u, vw〉 = 〈u, v+w−〉 + (−1)i1(i2+i3)〈v,w+u−〉 + (−1)(i1+i2)i3〈w,u+v−〉
= 〈u, v−w+〉 + (−1)i1(i2+i3)〈v,w−u+〉 + (−1)(i1+i2)i3〈w,u−v+〉. (4.56)

Proof. For an expression h(u,v, w), we denote

h(u, v,w) + c.p. = h(u, v,w) + (−1)i1(i2+i3)h(v,w, u) + (−1)i3(i1+i2)h(w, u, v). (4.57)

Moreover,

〈uv,w〉 = (−1)i3(i1+i2)〈w,uv〉 = (−1)i3(i1+i2)〈wu, v〉 = (−1)i1(i2+i3)〈v,wu〉 (4.58)

by the supersymmetry and associativity of 〈·, ·〉 on G.
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Note by (2.33), (2.34), (4.58), and the supersymmetry and associativity of 〈·, ·〉 on G,

〈u, v+w−〉 + c.p. = 〈u+ + u−, v+w−〉 + c.p.

= 〈u+, v+w−〉 + 〈u−, v+w−〉 + c.p.

= 〈u+v+, w−〉 + (−1)i3(i1+i2)〈w−u−, v+〉 + c.p.

= 〈u+v+, w〉 + (−1)i3(i1+i2)〈w−u−, v〉 + c.p.

= 〈u+v+, w〉 + 〈u−v−, w〉 + c.p. (4.59)

and

〈u, v−w+〉 + c.p. = 〈u+ + u−, v−w+〉 + c.p.

= 〈u+, v−w+〉 + 〈u−, v−w+〉 + c.p.

= (−1)i1(i2+i3)〈v−, w+u+〉 + 〈u−v−, w+〉 + c.p.

= (−1)i1(i2+i3)〈v,w+u+〉 + 〈u−v−, w〉 + c.p.

= 〈u+v+, w〉 + 〈u−v−, w〉 + c.p. (4.60)

Thus

〈u, v+w−〉 + (−1)i1(i2+i3)〈v,w+u−〉 + (−1)(i1+i2)i3〈w,u+v−〉
= 〈u, v−w+〉 + (−1)i1(i2+i3)〈v,w−u+〉 + (−1)(i1+i2)i3〈w,u−v+〉
= 1

3 [〈u, v+w−〉 + 〈u, v−w+〉 + 〈u+v+, w〉 + 〈u−v−, w〉 + c.p.]

= 1
3 [〈u, v+w−〉 + 〈u, v−w+〉 + 〈u, v+w+〉 + 〈u, v−w−〉 + c.p.]

= 1
3 [〈u, vw〉 + c.p.]

= 〈u, vw〉 (4.61)

by the supersymmetry and associativity of 〈·, ·〉 on G. �

Define

[u, v] = u · v − (−1)i1i2v · u for u ∈ Gi , v ∈ Gi2 . (4.62)

Pick any

L0 ∈ A−
0 + A(ι+1)

0 (4.63)

(cf. (3.51) and (3.52)) and set

L = L0 +
∑

i∈Z2, j∈Ii
xi,j ςi,j . (4.64)

Take any central element

κ ∈ A−
0 + A(ι+1)

0 (4.65)

of A. We define

{f, g}1 = 〈(L, [ς
(f )
, (κς

(g)
)+] − [(κς

(f)
)−, ς(g)]〉 for f, g ∈ P. (4.66)

Moreover, we define

{f, g}2 = 〈(Lς
(f )
)−L − L(ς

(f )
L)−, ς(g)〉 for f, g ∈ P. (4.67)

The following is the main theorem in this section.

Theorem 4.3. The brackets { ·,·} 1 in (4.66) and { ·,·} 2 in (4.67) forms a Poisson superpair on
the algebra P.
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Proof. Let ε ∈ F be any fixed constant. Set

L̂ = L + εκ. (4.68)

Then we have

∂u(L̂) = u for u ∈ G (4.69)

by (4.32) and (4.34). We define a map H : � → G by

H = (L̂u)−L̂ − L̂(uL̂)− for u ∈ G. (4.70)

For ςη ∈ �, we have

H(ςη) =
∑

i∈Z2, j∈Ii
ηi,j ((L̂ςi,j )−L̂ − L̂(ςi,j L̂)−). (4.71)

Hence H is of the form (4.45) by (4.63), (4.64) and the fact that κ ∈ A0. Moreover, it is
straightforward to verify that

H(u) = (Lu)−L − L(uL)+ + ε(κ[L, u]− + [(κu)−, L]) for u ∈ G. (4.72)

Thus by (2.32)–(2.34), (4.49), (4.58), (4.66) and (4.67), we have

{·, ·}H = ε{·, ·}1 + {·, ·}2. (4.73)

Therefore, we only need to prove that {·,·}H is a Poisson superbracket on P . Lemma 4.1 tells
us that it is enough to prove (4.50) and (4.51).

For u ∈ �i1 and v ∈ �i2 , we have

〈H(v), u〉 = 〈(L̂v)−L̂− L̂(vL̂)−, u〉
= 〈[L̂v − (L̂v)+]L̂ − L̂[vL̂ − (vL̂)+], u〉
= −〈(L̂v)+L̂ − L̂(vL̂)+, u〉
= −〈(L̂v)+L̂, u〉 + 〈L̂(vL̂)+, u〉
= −〈(L̂v)+, L̂u〉 + 〈(vL̂)+, uL̂〉
= −〈L̂v, (L̂u)−〉 + 〈vL̂, (uL̂)−〉
= − (−1)i1i2〈(L̂u)−, L̂v〉 + 〈v, L̂(uL̂)−〉
= − (−1)i1i2(〈(L̂u)−L̂, v〉 − 〈L̂(uL̂)−, v〉)
= − (−1)i1i2〈(L̂u)−L̂ − L̂(uL̂)−, v〉
= −(−1)i1i2〈H(u), v〉 (4.74)

by (2.33), (2.34), (4.58) and the supersymmetry and associativity of 〈·, ·〉 on G. Thus (4.50)
holds.

Let u ∈ �i1, v ∈ �i2 and w ∈ �i3 . We have

〈∂H(u)(H)(v),w〉
= 〈(H(u)v)−L̂ + (−1)i1i2(L̂v)−H(u)−H(u)(vL̂)−

− (−1)i1i2 L̂(vH(u))−, w〉
= 〈[((L̂u)−L̂ − L̂(uL̂)−)v]−L̂ + (−1)i1i2(L̂v)−((L̂u)−L̂ − L̂(uL̂)−)

− ((L̂u)−L̂ − L̂(uL̂)−)(vL̂)− − (−1)i1i2 L̂[v((L̂u)−L̂ − L̂(uL̂)−)]−, w〉
= 〈((L̂u)−L̂v)−L̂, w〉 − 〈(L̂(uL̂)−v)−L̂, w〉 + (−1)i1i2〈(L̂v)−(L̂u)−L̂, w〉

− (−1)i1i2〈(L̂v)−L̂(uL̂)−, w〉 − 〈(L̂u)−L̂(vL̂)−, w〉 + 〈L̂(uL̂)−(vL̂)−, w〉
− (−1)i1i2〈L̂(v(L̂u)−L̂)−, w〉 + (−1)i1i2〈L̂(vL̂(uL̂)−)−, w〉
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= 〈((L̂u)−L̂v)−, L̂w〉 − 〈(L̂(uL̂)−v)−, L̂w〉 + (−1)i1i2〈(L̂v)−(L̂u)−, L̂w〉
− (−1)i1i2〈(L̂v)−L̂(uL̂)−, w〉 − 〈(L̂u)−L̂(vL̂)−, w〉 + 〈(uL̂)−(vL̂)−, wL̂〉
− (−1)i1i2〈(v(L̂u)−L̂)−, wL̂〉 + (−1)i1i2〈(vL̂(uL̂)−)−, wL̂〉

= 〈(L̂u)−L̂v, (L̂w)+〉 − 〈L̂(uL̂)−v, (L̂w)+〉 + (−1)i1i2〈(L̂v)−(L̂u)−, L̂w〉
− (−1)i1i2〈(L̂v)−L̂(uL̂)−, w〉 − 〈(L̂u)−L̂(vL̂)−, w〉 + 〈(uL̂)−(vL̂)−, wL̂〉
− (−1)i1i2〈v(L̂u)−L̂, (wL̂)+〉 + (−1)i1i2〈vL̂(uL̂)−, (wL̂)+〉

= (−1)i1(i2+i3)〈L̂v, (L̂w)+(L̂u)−〉 + (−1)i1i2〈vL̂, (uL̂)−(wL̂)+〉
− [〈L̂(uL̂)−v, (L̂w)+〉 + 〈(L̂u)−L̂(vL̂)−, w〉 − 〈(uL̂)−(vL̂)−, wL̂〉]
− (−1)i1i2 [〈(L̂v)−L̂(uL̂)−, w〉 + 〈v(L̂u)−L̂, (wL̂)+〉 − 〈(L̂v)−(L̂u)−, L̂w〉]

(4.75)

by (2.33), (2.34), (4.58) and the supersymmetry and associativity of 〈·, ·〉 on G. Moreover,

〈L̂(uL̂)−v, (L̂w)+〉 + 〈(L̂u)−L̂(vL̂)−, w〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈L̂(uL̂)−v, (L̂w)+〉 + (−1)(i1+i2)i3〈(L̂w)−L̂(uL̂)−, v〉
− 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈L̂(uL̂)−v, (L̂w)+〉 + 〈L̂(uL̂)−v, (L̂w)−〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈L̂(uL̂)−v, (L̂w)+ + (L̂w)−〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈L̂(uL̂)−v, L̂w〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈(uL̂)−vL̂,wL̂〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.

= 〈(uL̂)−(vL̂)+, wL̂〉 + c.p.

= 〈uL̂vL̂,wL̂〉 (4.76)

and

〈(L̂v)−L̂(uL̂)−, w〉 + 〈v(L̂u)−L̂, (wL̂)+〉 − 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= (−1)i2(i1+i3)〈(L̂u)−L̂(wL̂)−, v〉 + 〈v(L̂u)−L̂, (wL̂)+〉
− 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= 〈v(L̂u)−L̂, (wL̂)−〉 + 〈v(L̂u)−L̂, (wL̂)+〉 − 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= 〈v(L̂u)−L̂, (wL̂)− + (wL̂)+〉 − 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= 〈v(L̂u)−L̂, wL̂〉 − 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= 〈L̂v(L̂u)−, L̂w〉 − 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.

= 〈(L̂v)+(L̂u)−, L̂w〉 + c.p.

= 〈L̂vL̂u, L̂w〉 (4.77)

by (4.55)–(4.58) and the supersymmetry and associativity of 〈·, ·〉 on G. Thus

〈∂H(u)(H)(v),w〉 + c.p.

= [(−1)i1(i2+i3)〈L̂v, (L̂w)+(L̂u)−〉 + c.p.]

+ [(−1)i1i2〈vL̂, (uL̂)−(wL̂)+〉 + c.p.]

− [〈L̂(uL̂)−v, (L̂w)+〉 + 〈(L̂u)−L̂(vL̂)−, w〉 − 〈(uL̂)−(vL̂)−, wL̂〉 + c.p.]

− (−1)i1i2 [〈(L̂v)−L̂(uL̂)−, w〉 + 〈v(L̂u)−L̂, (wL̂)+〉
− 〈(L̂v)−(L̂u)−, L̂w〉 + c.p.]

= 〈L̂u, L̂vL̂w〉 + (−1)i1i2〈vL̂, uL̂wL̂〉
− 〈uL̂vL̂,wL̂〉 − (−1)i1i2〈L̂vL̂u, L̂w〉 = 0 (4.78)
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by (4.56)–(4.58), the supersymmetry and associativity of 〈·, ·〉 on G and (4.75)–(4.77).
Therefore, (4.51) holds. �

5. Hamiltonian superpairs in variational calculus

In this section, we shall construct certain Hamiltonian superpairs in the formal variational
calculus over a finite-dimensional Z2-graded associative algebras with a supersymmetric
nondegenerate associative bilinear form. We assume that F is the field of real numbers or the
field of complex numbers.

Let A be a finite-dimensional Z2-graded associative algebra with a supersymmetric
nondegenerate associative bilinear form 〈·, ·〉. Denote

dimAi = ki for i ∈ Z2. (5.1)

Fix a nonnegative intger ι. Set

Ii = 1, ki × (−N

⋃
1, ι) for i ∈ Z2. (5.2)

For i ∈ Z2, let {ui,j | j ∈ Ii} be the C∞-functions in real variable x, taking values in Ei (cf.
(4.2)). Set

∂ = d

dx
u
(m)
i,j = dmui,j

dxm
for m ∈ N, i ∈ Z2, j ∈ Ii . (5.3)

Denote by P the algebra supersymmetric polynomials in {u(m)i,j | i ∈ Z2, j ∈ Ii}. Then P has
the Z2-grading

Pi = Span

{
u
(m1)
i1,j1

· · · umi,j|,mp ∈ N, ip ∈ Z2, jp ∈ Iip ,

∑
r=1

ir ≡ i

}
(5.4)

for i ∈ Z2, and (4.14) holds.
Take a basis {ςi,l | l ∈ 1, ki} of Ai for i ∈ Z2. Let Â be the free P-module generated by

{ςi,l | l ∈ 1, ki} with the Z2-grading

Âi =
∑
j∈1,k0

Piς0,j +
∑
j∈1,k1

P1+iς1,j for i ∈ Z2. (5.5)

Moreover, we define the multiplication on Â by

(f ςi1,j1)(gςi2,j2) = (−1)i1pfgςi1,j1ςi2,j2 for iq ∈ Z2, jq ∈ 1, kiq , g ∈ Pp (5.6)

and the bilinear form on Â by

〈f ςi1,j1, gςi2,j2〉 = (−1)i1pfg〈ςi1,j1, ςi2,j2〉 for iq ∈ Z2, jq ∈ 1, kiq , g ∈ Pp (5.7)

Then Â forms a Z2-graded associative algebra with a supersymmetric nondegenerate
associative bilinear form 〈·, ·〉. The algebra Â is an extension of A with extended
supersymmetric bilinear form 〈·, ·〉.

We view

∂ =
∑

i∈Z2, j∈1,ki , m∈N

u
(m+1)
i,l ∂

u
(m)
i,j

(5.8)

as a derivation of P . Moreover, we extend ∂ to a derivation of Â by

∂(f ςi,j ) = ∂(f )ςi,j for i ∈ Z2, j ∈ 1, ki . (5.9)



4262 Xiaoping Xu

Furthermore, we define the algebra of pseudo-differential operators

D =
{ n∑
l=−∞

φl∂
l | n ∈ Z, φl ∈ Â

}
(5.10)

with multiplication determined by

(φ∂m)(ψ∂n) =
∞∑
p=0

(
m

p

)
φψ(p)∂m+n−p for φ,ψ ∈ Â, m, n ∈ Z (5.11)

where

ψ(p) = ∂p(ψ). (5.12)

Then D forms a Z2-graded associative algebra with the grading

Di =
{ n∑
l=−∞

φl∂
l | n ∈ Z, φl ∈ Âi

}
for i ∈ Z2. (5.13)

Define the space

G =
{ ι∑
l=−∞

φl∂
l | φl ∈ Â

}
. (5.14)

Then G is a Z2-graded subspace of D with the grading

G0 = G
⋂

D0, G1 = G
⋂

D1. (5.15)

For

v =
∑

i∈Z2,(j1,j2)∈Ii
fi,(j1,j2)ςi,j1∂

j2 ∈ G with fi,(j1,j2) ∈ P (5.16)

we define the derivation of P:

∂v =
∑

i∈Z2, j∈Ii , m∈N

f
(m)
i,j ∂

u
(m)
i,j

(5.17)

(cf. (5.2)). It can be verified that as derivations on P ,

[∂, ∂v] = 0 for v ∈ G. (5.18)

Moreover, we set

∂v(w) =
∑

i∈Z2,(j1,j2)∈Ii
∂v(gi,(j1,j2))ςi,j1∂

j2 (5.19)

for v,w = ∑
i∈Z2,(j1,j2)∈Ii gi,(j1,j2)ςi,j1∂

j2 ∈ G. Furthermore, we can define a Lie
superbracket on G by

[v,w]0 = ∂v(w) − (−1)i1i2∂w(v) for v ∈ Gi1 , w ∈ G2. (5.20)

Set

P̃ = P/∂(P) (5.21)

and denote

f̃ = f + ∂(P) for f ∈ P. (5.22)

We define an action of G on P̃ by

v(f̃ ) = (∂v(f ))
∼ for f ∈ P. (5.23)
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Then P̃ becomes a G-module. Moreover, we define a bilinear map 〈·, ·〉 : D × D → P̃ by

〈v,w〉 =
∑
j∈Z

(〈φj ,ψ−j−1〉)∼ for v =
∑
m∈Z

φm∂
m, w =

∑
m∈Z

ψm∂
m ∈ D (5.24)

(cf. (5.7)), where the sum is finite by (5.10). Then 〈·, ·〉 forms a supersymmetric associative
bilinear map (cf. (2.32)) by lemma 2.6 in [10].

For v = ∑
j∈Z

φj∂
j ∈ D, we define

v+ =
∞∑
j=0

φj∂
j v− =

∞∑
j=1

φ−j ∂−j . (5.25)

Set

D± = {v± | v ∈ D}. (5.26)

ThenD± are isotropic Z2-graded subalgebra ofD with respect to the bilinear map 〈·, ·〉. Define

� =
∞∑

m=−ι−1

∂mÂ. (5.27)

Then � is a Z2-graded subspace of D by (5.11) with the grading

�0 = �
⋂

D0 �1 = �
⋂

D1. (5.28)

Identify � with a subspace of one-forms (taking values in P̃ by

@(v) = 〈v,@ 〉 for v ∈ G, @ ∈ �. (5.29)

We define variational operators on P by

δ(i,j) =
∞∑
m=0

(−∂)m ◦ ∂
u
(m)
i,j

for i ∈ Z2, j ∈ Ii (5.30)

where ◦ is the composition of operators on P . It can be verified that

δ(i,j)(∂(P)) = {0} for i ∈ Z2, j ∈ Ii . (5.31)

Moreover, we define a linear map χ : P → � by

χ
f

=
∑

i∈Z, j=(j1,j2)∈Ii
(−1)i(1+p)∂−j2−1δ(i,j)(f )ςi,j1 for f ∈ Pp. (5.32)

Then we can verify

df (v) = 〈v, χ
f
〉 for f ∈ P, v ∈ G. (5.33)

Hence

df = χf ∈ � for f ∈ P. (5.34)

The Lie superbracket on D is defined by

[v1, v2] = v1v2 − (−1)i1i2v2v1 for v1 ∈ Pi1 , v2 ∈ Pi2 . (5.35)

Take

L0 =
ι+1∑

m=−∞
σm∂

m with σm ∈ A0 (5.36)

and

κ ∈ A0

⋂
(Centre A). (5.37)
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Set

L = L0 +
∑

i∈Z2, j=(j1,j2)∈Ii
ui,j ςi,j1∂

j2 (5.38)

(cf. (5.2)). We define the linear maps H1,H2 : � → G by

H1(@) = κ[L,@ ]− + [(κ@)−, L]
(5.39)

H2(@) = (L@)−L − L(@L)− for @ ∈ �.

By similar arguments as those in the proof of theorem 4.3, we have:

Theorem 5.1. The pair (H1, H2) forms a Hamiltonian superpair.

The examples of finite-dimensionalZ2-graded associative algebras with a supersymmetric
nondegenerate associative bilinear form were given in example 3.2. In fact, they contain an
identity element (the identity matrix).

Remark 5.2. Suppose that A contains an identity element. Take the special case L0 = ∂ι+1.
Then

L = ∂ι+1 +
∑

i∈Z2, j=(j1,j2)∈Ii
ui,j ςi,j1∂

j2 . (5.40)

By an algebraic manipulation, we can find

L1/(ι+1) = ∂ +
∞∑
m=0

fm∂
−m with fm ∈ Â (5.41)

such that

(L1/(ι+1))ι+1 = L. (5.42)

Since A has an identity element 1A, the map

Tr (a) = 〈1A, a〉 for a ∈ A (5.43)

is a supersymmetric trace map, that is,

Tr (ab) = (−1)i1i2Tr (ba) for a ∈ Ai1, b ∈ Ai2 . (5.44)

We extend the trace map to D by

Tr

( ∑
i∈Zi , l∈1,ki, m∈Z

fi,l,mςi,l∂
m

)
=

∑
i∈Zi , l∈1,ki

fi,l,−1Tr (ςi,l). (5.45)

Then the above map is a supersymmetric trace map of the associative algebra D by lemma 2.6
in [10].

Assume that {ui,j | i ∈ Z2, j ∈ Ii} are also C1-functions of another variable t and
periodic in x. Take a positive integer m. Then the system

dL

dt
= [L, (Lm/(ι+1))+] (5.46)

has infinitely many conservation laws:

Tr (Ln/(ι+1)) for n ∈ N + 1. (5.47)

Suppose that {ui,j | i ∈ Z2, j ∈ Ii} are C1-functions of variable {t1, t2, t3, . . . .} and
periodic in x. Set

Bm = (Lm/(ι+1))+ for m ∈ N + 1. (5.48)
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Assume that
dL

dtm
= [L,Bm] for m ∈ N + 1. (5.49)

Then
dBm

dtn
− dBn

dtm
= [Bm,Bn] for m,n ∈ N + 1. (5.50)

The above equations are called the equations of zero curvature. We refer to [7, 8, 10] for more
details.
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